
sparki𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
Release latest

Jun 16, 2022

Contents

1 Sparki Commands 5
1.1 General Commands . 5
1.2 Common Variables . 8
1.3 Movement Commands . 8
1.4 Grid Commands . 10
1.5 Input Commands . 12
1.6 Output Commands . 13
1.7 Sensor Commands . 15
1.8 IR Commands . 17
1.9 EEPROM Commands . 17

2 Related Commands 19
2.1 Synchronization Commands . 19

i

ii

sparki𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

The Sparki robot homepage at Arcbotics may be found here: http://arcbotics.com/products/sparki/

The sparki_learning library github page (with installation instructions) may be found here: https://github.com/radarjd/
sparki_learning

This command reference is for version 1.6.8 of the python library

(this library makes use of Python 3; if you’re using Python 2, stop!)

Contents

• Sparki Learning Command Quick Reference

– Sparki Commands

* General Commands

· #

· constrain(n, min_n, max_n)

· currentTime()

· flrange(start, stop, step)

· from sparki_learning import *

· getCommandQueue()

· getUptime()

· getVersion()

· humanTime()

· init(com_port, print_versions=True, auto=False, retries=2)

· initAuto()

· noop()

· randint(start, stop)

· range(start, stop, step)

· setDebug(level)

· setSparkiDebug(level)

· timer(duration)

· wait(time)

· waitNoop(time)

* Common Variables

* Movement Commands

· backward(speed, time = -1)

· forward(speed, time = -1)

· gripperClose(distance = 7)

· gripperOpen(distance = 7)

· gripperStop()

Contents 1

http://arcbotics.com/products/sparki/
https://github.com/radarjd/sparki_learning
https://github.com/radarjd/sparki_learning

sparki𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

· isMoving()

· motors(left_speed, right_speed, time = -1)

· moveBackwardcm(distance)

· moveForwardcm(distance)

· servo(position) (defined below) will turn the Sparki’s head

· stop()

· turnLeft(speed, time = -1)

· turnRight(speed, time = -1)

* Grid Commands

· drawFunction(function, xvals, scale = 1)

· getAngle()

· getCentimetersMoved()

· getPosition()

· moveBy(x, y, turnBack = False)

· moveTo(x, y, turnBack = False)

· resetPosition()

· setAngle(newAngle)

· setPosition(x, y)

· turnBy(degrees)

· turnTo(degrees)

* Input Commands

· ask(message, title = “Question”)

· askQuestion(message, options, title = “Question”)

· gamepad()

· input(message)

· joystick()

· messageWindow(message, title = “Message”)

· pickAFile(prompt = “Choose a file”)

· pickAFolder(prompt = “Choose a folder”)

· yesorno(message)

* Output Commands

· beep(time = 200, freq = 2800)

· LCDclear(update = True)

· LCDdrawLine(X1, Y1, X2, Y2, update = True)

· LCDdrawPixel(X,Y, update = True)

2 Contents

sparki𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

· LCDdrawRect(X1, Y1, X2, Y2, update = True)

· LCDdrawString(X, Y, message, update = True)

· LCDerasePixel(X,Y, update = True)

· LCDprint(message, update = True)

· LCDprintLn(message, update = True)

· LCDsetColor(color)

· LCDreadPixel(X,Y)

· LCDupdate()

· print(message)

· printDebug(message, priority = DEBUG_WARN, output = sys.stderr)

· setRGBLED(red, green, blue)

· setStatusLED(brightness)

· speak(message, alsoprint=False)

* Sensor Commands

· compass()

· getAccel()

· getBattery()

· getBright(position)

· getLine(position)

· getMag()

· getObstacle(position)

· ping()

· senses()

· servo(position)

* IR Commands

· receiveIR()

· sendIR(data)

* EEPROM Commands

· bluetoothRead()

· bluetoothWrite(address)

· EEPROMread(location, amount)

· EEPROMwrite(location, data)

· getName()

· setName(name)

– Related Commands

Contents 3

sparki𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

* Synchronization Commands

· get_client_start(server_ip, server_port = 32216)

· start_sync_server(time = 15, server_port = 32216)

· start_sync_client(server_ip, server_port = 32216)

· syncWait(server_ip, server_port = 32216)

4 Contents

CHAPTER 1

Sparki Commands

1.1 General Commands

1.1.1 #

The number sign (also called the pound sign or the hash sign) indicates the beginning of a comment.
Python ignores everything on a line after #. Comments are used to explain what your code is doing and
can be very helpful when someone else is reading your code (or you are re-reading it after not having
worked on it in some time).

1.1.2 constrain(n, min_n, max_n)

Returns a value that is greater than or equal to min_n and less than or equal to max_n (i.e. it does bounds
checking). This function is used when you have a value (n) that you want to be sure is no less than min_n
and no more than max_n. If n is between min_n and max_n, it returns n. If n is less than min_n, it returns
min_n. If n is greater than max_n, it returns max_n. Used heavily within the library – you may or may
not find it useful. (Moved to sparki_learning.util)

1.1.3 currentTime()

Returns the number of seconds which have occurred since midnight on January 1, 1970. Other func-
tions exist to format this into a more manageable number (like humanTime() below), but this can be used
(among other uses) to determine how long a part of a program has taken. For example, to time how long
a portion of code takes to execute (in clock time), before the function you could write startingTime = cur-
rentTime() and then after the function you could find out the running time with runTime = currentTime()
- startingTime. (Moved to sparki_learning.util)

5

sparki𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

1.1.4 flrange(start, stop, step)

Returns an iterator, very similar to range() in Python 3 or xrange() in Python 2 (see range below). None
of the arguments have default values. start should be the first value of x you want to calculate, stop should
be the last - step value you want to calculate, and step should be the step. If step is negative, this will
count down from start to stop (so stop must be less than start). The start, stop, and step values are very
similar to the arguments to the range command, but range() allows only integer arguments. (Moved to
sparki_learning.util)

1.1.5 from sparki_learning import *

This command imports the sparki_learning module to make all of the Sparki specific commands available.
It must appear at the beginning of your Sparki programs. Other modules (also called libraries) exist in
python such as string, math, random, sys, os and datetime.

1.1.6 getCommandQueue()

Returns a tuple containing the commands (with arguments) that have been sent to the Sparki.

1.1.7 getUptime()

Returns the number of milliseconds since the Sparki was initialized; returns -1 if Sparki has not been
initialized.

1.1.8 getVersion()

Returns a tuple containing the version of the Python sparki_learning library and the version of the software
running on the Sparki in that order (i.e. python library version is [0] and sparki software is [1]).

1.1.9 humanTime()

Returns the time in a human readable format like “Fri Apr 5 19:50:05 2016”. (Moved to
sparki_learning.util)

1.1.10 init(com_port, print_versions=True, auto=False, retries=2)

Connects your computer to the Sparki via Bluetooth. On Windows, com_port will be something like
“COM5” or “COM40”. On a Mac, instead of using a COM port, you will use a device path which
looks something like “/dev/tty.ArcBotics-DevB”. You must have paired your computer with Sparki on
Bluetooth prior to executing this command. Your computer will assign the COM port or device. On a
Mac, you can also use the secret port “mac” and the library will fill in the standard Mac port. This function
has become increasingly complicated in order to make it easier to initialize the robot without errors. The
print_versions argument (optional, default is True) will print a message upon initialization that tells you
the Sparki and python library versions. The auto argument (optional, default is False) will suppress serial
errors, and is intended to be used with the initAuto()_ command below. The retries argument (optional,
default is 2) specifies the number of times to try to initialize the robot on the given port. The most common
reason that initialization appears to fail even though the port is correct appears to have to do with power
saving. A modern OS will deactivate the Bluetooth when it’s not in use to save power. Giving a couple of
tries seems to turn it back on.

6 Chapter 1. Sparki Commands

sparki𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

1.1.11 initAuto()

Connects your computer to the Sparki via Bluetooth by guessing at the port. On Mac, this will try the
most common addresses, but if you custom named the port, this will not be successful. On Windows, this
will try COM3 through COM10. It will (by default) print the port that it found the connection on, so that
you can put that into init

1.1.12 noop()

This does nothing. It happens to be that doing nothing can be helpful on a laptop – laptops have a
tendency to drop the bluetooth connection to the robot very quickly, probably for power saving purposes.
This command will send a message to the sparki in an attempt to prevent the connection from being
dropped.

1.1.13 randint(start, stop)

Returns an integer between (and including) the start and stop bounds. To use this function, you must
import it from the random library (e.g. from random import randint). The random library has a variety
of other functions to generate (semi-)random numbers. Full documentation may be found at https://docs.
python.org/3/library/random.html

1.1.14 range(start, stop, step)

Returns a list of integers from start to stop by step. start is the number at which the range begins. The
range ends one value before stop. The range counts by step. For example, if step is 2, range counts by
twos. start and step are optional. start defaults to 0 and step defaults to 1. This command is built in
to Python, with full documentation at https://docs.python.org/3/library/stdtypes.html#typesseq-range . In
Python 2, you should use the xrange() function instead with full documentation at https://docs.python.org/
2.7/library/functions.html#xrange

1.1.15 setDebug(level)

Sets the level of debug output for the python library. Possible values (from least verbose to most verbose)
are DEBUG_ALWAYS, DEBUG_CRITICAL, DEBUG_ERROR, DEBUG_WARN, DEBUG_INFO,
DEBUG_DEBUG. The DEBUG levels are constant integer values defined in the sparki_learning library.
The default is DEBUG_WARN, which is a fairly sane level of verbosity. DEBUG_INFO will give a mes-
sage each time a function is entered. DEBUG_DEBUG will output all messages to and from the robot as
well.

1.1.16 setSparkiDebug(level)

Sets the level of debug output for the Sparki itself library. The SPARKI_DEBUGS capability must be set
to True (and it is False for all “standard” versions of the Sparki library to save memory on the Sparki).
Possible values (from least verbose to most verbose) are DEBUG_ALWAYS, DEBUG_CRITICAL, DE-
BUG_ERROR, DEBUG_WARN, DEBUG_INFO, DEBUG_DEBUG. The DEBUG levels are constant
integer values defined in the sparki_learning library. The default is DEBUG_WARN, which is a fairly
sane level of verbosity. Messages will be displayed on the Sparki’s LCD. You probably never will use this
function.

1.1. General Commands 7

https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/stdtypes.html#typesseq-range
https://docs.python.org/2.7/library/functions.html#xrange
https://docs.python.org/2.7/library/functions.html#xrange

sparki𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

1.1.17 timer(duration)

Generator which returns (yields) the amount of time which has passed since it was first called. Ends when
the time of the original call plus the duration is greater than the current time. In practice, this function is
usually used to create a for loop which executes for duration. (e.g. for x in timer(120): [insert code you
want to run for 120 seconds]). (Moved to sparki_learning.util)

1.1.18 wait(time)

Waits time seconds before moving to the next command.

1.1.19 waitNoop(time)

Waits time seconds before moving to the next command, and sends noops to the robot every second in
order to prevent a timeout. On a Mac, this may be a better command to use than wait, but it will also be
less accurate as to the amount of time waited.

1.2 Common Variables

Several commands in the myro module use variables for speed and time, including motors(), forward(), backward(),
turnLeft(), and turnRight(). wait() makes use only of time. message is used for output and some input functions. file
is used for reading data from files and saving data to them.

distance - a float number of centimeters.

file - a string value containing an absolute path to a file, or a relative path from the directory where IDLE resides. An
absolute path on Windows looks like “C:\Music\musicfile.wav” and on Mac looks like “/home/music/musicfile.wav”.
Even on Windows, the backslashes may appear as front slashes.

message - a value to be output such as a literal string like “Hello, World”, a variable, or a combination. If you want
message to be a literal string, remember to enclose the string in quotation marks. If you are combining a string plus a
numeric value, you need to convert the numeric value to a string using the str() function. For example, if count were
a variable which holds the iteration number of a loop, message could be “I am on iteration number ” + str(count).
In the two special cases of print(message) and speak(message, alsoprint=False), message may actually be multiple
arguments instead of a string. That is, in the case of those two functions only, you can do something like print(“Hello”,
2, “you”) or speak(“Hello”, 2, “you”).

speed - a value between -1 and 1. Any value less than -1 will be made -1; any value more than 1 will be made 1. A
value of 1 means to turn the wheels at full power. A value of -1 means to turn the wheels in the opposite direction at
full power. Decimal values mean to use proportionately less than full power (so .5 is half power).

time - the time in seconds to perform the action. Fractional values will perform for fractional seconds. A value of -1
means to perform the action forever. If time is optional for a command, the value defaults to -1 (meaning that if you
omit time, the robot performs the command until you tell it to stop()).

1.3 Movement Commands

In addition to the below, the Grid Commands also move the robot.

8 Chapter 1. Sparki Commands

sparki𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

1.3.1 backward(speed, time = -1)

Move the robot backward at speed speed for time seconds. time is optional and may be omitted. See the
section on Common Variables for an explanation of speed and time.

1.3.2 forward(speed, time = -1)

Move the robot forward at speed speed for time seconds. time is optional and may be omitted. See the
section on Common Variables for an explanation of speed and time.

1.3.3 gripperClose(distance = 7)

Closes the gripper on the robot distance centimeters. distance is optional and may be omitted – if omitted,
the gripper will be totally closed.

1.3.4 gripperOpen(distance = 7)

Opens the gripper on the robot distance centimeters. distance is optional and may be omitted – if omitted,
the gripper will be totally opened.

1.3.5 gripperStop()

Stops the gripper motor.

1.3.6 isMoving()

Returns True if the Python library thinks the Sparki’s wheel motors are turning. Note that this is a guess
and errors or connection problems could throw this off.

1.3.7 motors(left_speed, right_speed, time = -1)

Starts the robot’s wheel motors. The left wheel will move at left_speed. The right wheel will move at
right_speed. The wheels will move for time seconds. time is optional and may be omitted. left_speed
and right_speed are speed variables, and time is a time variable, as defined in the section on Common
Variables.

1.3.8 moveBackwardcm(distance)

Moves the robot backward distance centimeters.

1.3.9 moveForwardcm(distance)

Moves the robot backward distance centimeters.

1.3. Movement Commands 9

sparki𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

1.3.10 servo(position) (defined below) will turn the Sparki’s head

1.3.11 stop()

Stops the robot’s motors immediately. Only necessary if the robot is presently in motion (e.g. for the
motors() or move() commands).

1.3.12 turnLeft(speed, time = -1)

Turn the robot left at speed speed for time seconds. time is optional and may be omitted. See the section
on Common Variables for an explanation of speed and time.

1.3.13 turnRight(speed, time = -1)

Turn the robot right at speed speed for time seconds. time is optional and may be omitted. See the section
on Common Variables for an explanation of speed and time.

1.4 Grid Commands

The grid commands implement a pseudo-coordinate plane for use with the Sparki. When you turn the robot on, the
robot is assumed to be a 0,0 and facing the positive direction on the y axis. You can use the moveTo() commands
to move to a specific point on the grid. Each integer position on the grid is 1cm from the next or previous integer
position. For example, 0,1 would be 1cm forward from the starting position of the robot. The robot only updates its
grid position when using the grid commands. For example, if you used forward(1,1), that would not update the grid
position. If you want to ensure the robot stays somewhere on the grid, only use grid movement commands. If you
don’t care about the grid position, mixing commands is perfectly fine!

1.4.1 drawFunction(function, xvals, scale = 1)

This is a complicated function. drawFunction() draws the function given by the function argument on the
coordinate plane. The function argument should be a lambda function. The lambda function given should
return the value of the y coordinate given the x. For example, lambda x: x**2 given as the function would
graph y=x2. xvals should be an iterator of the values of x you want to use. You may find the flrange()
function helpful. For example, drawFunction(lambda x: math.sin(x), flrange(-2, 2.1, .1)) would draw the
sin x from -2 to 2 going a tenth at a time. scale increases the size of the drawing for visibility.

1.4.2 getAngle()

Return the number of degrees that Sparki has turned using the turnBy() command, or since setAngle()
was last called. turnRight(), turnLeft() and motors() do not update the angle. Increases on positive angle
turns and decreases on negative angle turns.

1.4.3 getCentimetersMoved()

Returns the float number of centimeters Sparki has moved using moveForwardcm(), moveBackwardcm(),
and the grid commands. Always increases.

10 Chapter 1. Sparki Commands

sparki𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

1.4.4 getPosition()

Return Sparki’s current position on the grid as a list. The x position is the first element of the list (i.e. [0])
and the y position is the second element of the list (i.e. [1]).

1.4.5 moveBy(x, y, turnBack = False)

Move the robot to grid position x, y as though the current position were 0,0. For example, if the robot is
at 3,4, moveBy(1,1) would move Sparki to 4,5. If turnBack is True (not the default), the robot will turn
back to the heading it was on prior to the command.

1.4.6 moveTo(x, y, turnBack = False)

Move the robot to grid position x, y. If turnBack is True (not the default), the robot will turn back to the
heading it was on prior to the command.

1.4.7 resetPosition()

Sets Sparki’s current position on the grid to 0,0 and its angle to 0. The same as calling setAngle(0) and
setPosition(0,0). Does not move the robot.

1.4.8 setAngle(newAngle)

Sets the number of degrees that Sparki has turned, which is used by moveBy() and moveTo(). When
Sparki is initialized, the angle is 0, so to reset the angle as though the robot were just turned on, use
setAngle(0). newAngle defaults to 0. turnRight(), turnLeft() and motors() do not update the angle. Does
not move Sparki - if you want to turn to an angle relative to the robot’s starting position, use turnTo(); if
you want to turn to an angle relative to the robot’s current position, use turnBy()

1.4.9 setPosition(x, y)

Sets Sparki’s current position on the grid. Does not move the robot.

1.4.10 turnBy(degrees)

Turns the robot by a number of degrees. degrees can be any number. A negative degrees turns the robot
left (counterclockwise). A positive degrees turns the robot right (clockwise). Note that this behavior is
different than the Myro library - for the Myro library, a negative value turns right (clockwise).

1.4.11 turnTo(degrees)

Turns the robot to the specified heading relative to the value returned by getAngle(). degrees can be any
number greater than or equal to 0 and less than 360. A value greater than or equal to 360 or less than 0
will be wrapped around. When the robot is initialized, that heading is defined as 0.

1.4. Grid Commands 11

sparki𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

1.5 Input Commands

Several of the commands (ask(), askQuestion(), joystick(), pickAFile() and yesorno()) will create GUI windows if
tkinter is available. If it is not, the library will fall back to pure text.

1.5.1 ask(message, title = “Question”)

Creates window with message. User is allowed to input a response. Returns the user’s response. See the
section on Common Variables for an explanation of message. title is optional and defaults to “Question”.
(Note that if this appears to do nothing, the window with the output may be hidden behind other windows.)
(Moved to sparki_learning.gui in v1.6.0.)

1.5.2 askQuestion(message, options, title = “Question”)

Creates window with message, with buttons labeled with options. options must be a list of strings. Returns
the user’s response. See the section on Common Variables for an explanation of message. Loops until user
gives a value in options. title is optional and defaults to “Question”. (Note that if this appears to do noth-
ing, the window with the output may be hidden behind other windows.) (Moved to sparki_learning.gui in
v1.6.0.)

1.5.3 gamepad()

Control Sparki using the remote control. The Sparki will not accept commands while it is under remote
control. Press + or - on the remote to end remote control.

1.5.4 input(message)

Prints message to the shell. User is allowed to input a response. Returns the user’s response. See the
section on Common Variables for an explanation of message. This command is built in to Python. The
full documentation is available at python.org at https://docs.python.org/3/library/functions.html#input

1.5.5 joystick()

Control Sparki using a GUI window. Allows movement and opening and closing of the gripper. (Note
that if this appears to do nothing, the window with the output may be hidden behind other windows.)

1.5.6 messageWindow(message, title = “Message”)

Strictly speaking, this is not an input command, but it does display a message to the user and “pause” your
program until the user clicks okay.

1.5.7 pickAFile(prompt = “Choose a file”)

Creates window with a file dialog so that the user can pick a file. Might be useful for reading from or
saving to a file. (Moved to sparki_learning.gui in v1.6.0.). prompt is an optional message prompt to the
user (added in 1.6.3)

12 Chapter 1. Sparki Commands

https://docs.python.org/3/library/functions.html#input

sparki𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

1.5.8 pickAFolder(prompt = “Choose a folder”)

Creates window with a dialog so that the user can pick a folder. prompt is an optional message prompt to
the user.

1.5.9 yesorno(message)

Creates window with message, with buttons labeled with “yes” and “no”. Returns the user’s response
(which will be either “yes” or “no”). See the section on Common Variables for an explanation of message.
(Moved to sparki_learning.gui in v1.6.0.)

1.6 Output Commands

1.6.1 beep(time = 200, freq = 2800)

Plays a tone at freq for time milliseconds through the Sparki. Both are optional (freq defaults to 2800
and time to 200). A list of common frequencies can be found at http://en.wikipedia.org/wiki/Piano_key_
frequencies.

1.6.2 LCDclear(update = True)

Clears (makes blank) Sparki’s LCD. Note that you must call LCDupdate() to display the message once
it’s printed if you set update to False.

1.6.3 LCDdrawLine(X1, Y1, X2, Y2, update = True)

Draws a line from X1, Y1 to X2, Y2 on the LCD. The X coordinates can be from 0 to 127. The Y
coordinates can be from 0 to 63. Note that you must call LCDupdate() to display the line once it’s drawn
if you set update to False.

1.6.4 LCDdrawPixel(X,Y, update = True)

Draws the pixel at X, Y on the LCD. The X coordinate can be from 0 to 127. The Y coordinate can be
from 0 to 63. Note that you must call LCDupdate() to display the dot once it’s drawn if you set update to
False.

1.6.5 LCDdrawRect(X1, Y1, X2, Y2, update = True)

Draws a rectangle having opposite corners at X1, Y1 and X2, Y2 on the LCD. The X coordinates can be
from 0 to 127. The Y coordinates can be from 0 to 63. Note that you must call LCDupdate() to display
the line once it’s drawn if you set update to False.

1.6.6 LCDdrawString(X, Y, message, update = True)

Prints message to the LCD on the back of Sparki at the X, Y coordinate given. X is the pixel to begin the
drawing – can be from 0 to 121. Y is the line to begin the drawing – can be from 0 to 7. Note that you
must call LCDupdate() to display the message once it’s printed if you set update to False.

1.6. Output Commands 13

http://en.wikipedia.org/wiki/Piano_key_frequencies
http://en.wikipedia.org/wiki/Piano_key_frequencies

sparki𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

1.6.7 LCDerasePixel(X,Y, update = True)

Erases the pixel at X, Y on the LCD. The X coordinate can be from 0 to 127. The Y coordinate can be
from 0 to 63. Note that you must call LCDupdate() to display the dot once it’s drawn if you set update to
False.

1.6.8 LCDprint(message, update = True)

Prints message to the LCD on the back of Sparki. See the section on Common Variables for an explanation
of message. Note that you must call LCDupdate() to display the message once it’s printed if you set update
to False.

1.6.9 LCDprintLn(message, update = True)

Prints message to the LCD on the back of Sparki, and go to the next line. See the section on Common
Variables for an explanation of message. Note that you must call LCDupdate() to display the message
once it’s printed if you set update to False.

1.6.10 LCDsetColor(color)

Sets the drawing color of the LCD command. Can be used to erase previously drawn things. color of 0 is
black, and that’s how it starts. color of 1 is white, and would erase things that are black.

1.6.11 LCDreadPixel(X,Y)

Returns True if the color of the pixel at X, Y on the LCD is black; otherwise returns False. The X
coordinate can be from 0 to 127. The Y coordinate can be from 0 to 63.

1.6.12 LCDupdate()

Updates the Sparki’s LCD with anything new you’ve printed to it since the last update.

1.6.13 print(message)

Prints message to the computer screen. See the section on Common Variables for an explanation of
message. print() is built in to Python and has other useful options, but they go beyond what you’re likely
to encounter routinely. The full documentation is available at python.org at https://docs.python.org/3/
library/functions.html#print

1.6.14 printDebug(message, priority = DEBUG_WARN, output = sys.stderr)

Prints message to output if the current debug level (set by setDebug(level) and defaulting to DE-
BUG_WARN) is greater than or equal to priority. output defaults to standard error. Included for con-
venience of writing your own functions. message must be a string (i.e. message does not accept multiple
arguments like speak or print). (Moved to sparki_learning.util in 1.5.2.dev2)

14 Chapter 1. Sparki Commands

https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/functions.html#print

sparki𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

1.6.15 setRGBLED(red, green, blue)

Sets the RGB LED to red, green, blue, where each value is a number from 0 to 100. For example, [100,
0, 0] would turn the light fully red, [0, 100, 0] would be fully green, and [0, 0, 100] would be fully blue.
The values can be mixed to make most colors. Hardware limitations prevent this function from working
to its full capability. The LED simply cannot display all values, and in particular cannot display values
where red is equal to the other values. If you want to display “white”, Arcbotics recommends values of
60,100,90 – the library contains suggested values for other colors in the setRGBLED function code.

1.6.16 setStatusLED(brightness)

Sets the status LED to brightness, where brightness is a number from 0 to 100. For the “standard” versions
of the Sparki software, the status LED is illuminated when the robot is processing a command, and turned
off when it is not, so this is of limited use.

1.6.17 speak(message, alsoprint=False)

Speaks the given message. Can be given an argument like print – e.g. speak(“Hello”, 2, “you”) should
work as well as speak(“Hello to you”). You can also give the keyword argument alsoprint=True if you
want the speak commend to print out the message immediately prior to speaking. So, you could use
speak(“Hello”, 2, “you”, alsoprint=True) as well as speak(“Hello to you”, alsoprint=True) Relies on op-
erating system features, not python – only implemented for Mac and Windows. On Mac, this uses the
say command. On Windows, this command may create a window which is open briefly during the actual
speech and requires write access to the user’s home folder. The speak function is implemented with a
hack and may be unreliable.

1.7 Sensor Commands

1.7.1 compass()

Returns Sparki’s current compass heading. Inaccurate

1.7.2 getAccel()

Returns the current values of Sparki’s 3 accelerometers in a list. Accelerometers measure acceleration
(primarily due to gravity) and can tell you the orientation of Sparki. The library includes convenience
functions getAccelX(), getAccelY(), and getAccelZ() if you only want one sensor value.

1.7.3 getBattery()

depricated due to inaccuracies in 1.5.1 – always returns -1. Returns the current voltage of Sparki’s
batteries. ArcBotics reports that the underlying system call is unreliable, and as such any value returned
by this function is suspect (a value < 2 should always be disregarded). If it is working, anything below
around 4 is low. Should be just below 6 with new batteries.

1.7. Sensor Commands 15

sparki𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

1.7.4 getBright(position)

Returns the brightness value in front of the robot from position. A higher number indicates more light.
position is the literal string “left”, “center”, or “right” (or the number 0 for “left”, 1 for “center”, or 2 for
“right”). position may be omitted, in which case this returns a list of three values representing the “left”,
“center”, and “right” sensors.

1.7.5 getLine(position)

Returns the value of the line sensor in position. The sensor is actually testing the reflection of an infrared
light, and is only accurate with a high amount of contrast (e.g. a black line on a white surface). position
may be any number 0 through 4: 0 is the line sensor on the left edge, 1 is the left middle, 2 is the middle,
3 is the right middle, and 4 is the left edge. position may be omitted, in which case getLine() returns a list
of five values representing all line sensors.

1.7.6 getMag()

Returns the current values of Sparki’s 3 magnetometers in a list. Magnetometers measure magnetic fields
around the robot. The library includes convenience functions getMagX(), getMagY(), and getMagZ() if
you only want one sensor value.

1.7.7 getObstacle(position)

Returns a number which is the number of centimeters the Sparki believes the closest object is. position
is the literal string “left”, “center”, or “right” (or the number of degrees you want to turn the servo – see
the servo command for more information). position may be omitted, in which case getObstacle() returns
a list of three values representing the “left”, “center”, and “right” values.

1.7.8 ping()

Returns the number of centimeters to the closest object directly in front of Sparki’s head. You can turn
the head with servo(position) and then get a distance with ping().

1.7.9 senses()

Displays a window with (or prints out) data from all of the sensors on Sparki. By default, it updates every
two seconds. Program execution is paused while the window is displayed. If tkinter is not available, no
window will be displayed, but the status of the sensors will be output in text. (Note that if this appears to
do nothing, the window with the output may be hidden behind other windows.)

1.7.10 servo(position)

Turns the servo (sparki’s head) to position. position is a number between -90 and 90, where -90 is directly
to the left, 0 is straight ahead, and 90 is directly to the right.

16 Chapter 1. Sparki Commands

sparki𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

1.8 IR Commands

1.8.1 receiveIR()

Returns an int received from the IR sensor on the front of the Sparki. You can then convert this int to a
more meaningful piece of information. Returns a -1 if no data is available Not well tested

1.8.2 sendIR(data)

Sends the int data via the IR emitter on the front of the Sparki. Not well tested

1.9 EEPROM Commands

The EEPROM is non-volatile (long-term) storage located on the processor on Sparki (the processor is the chip labeled
ATMEGA32U4). The ATMEGA32U4 has 1024 bytes of EEPROM. We use this primarily to store the name of the
Sparki (at byte 20), but you can use it to store other stuff. These commands allow you to read and write from the
EEPROM.

1.9.1 bluetoothRead()

Returns the bluetooth address of the Sparki if it has been previously stored on the robot. The address
must be written to byte 80 in the EEPROM using either EEPROMwrite(location, data) or preferably
bluetoothWrite(address).

1.9.2 bluetoothWrite(address)

Writes the bluetooth address to the EEPROM. address must be a properly formatted bluetooth address
(i.e. it must be six pairs of hexidecimal numbers separated by either - or :). The method of determining
your address varies on your operating system.

1.9.3 EEPROMread(location, amount)

Reads amount bytes of data at location in the EEPROM. location must be greater than or equal to 0 and
less than 1024. Note that it is likely that there’s nothing interesting at a particular location unless you’ve
put it there.

1.9.4 EEPROMwrite(location, data)

Writes data to location in the EEPROM. location must be greater than or equal to 0 and less than 1024.
The length of data plus the location must be less than 1024 (since the EEPROM stops at 1024). Be
careful with writing data to the EEPROM, as you don’t want to overwrite important things. As a general
guideline, keep your writing location greater than 100.

1.8. IR Commands 17

sparki𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

1.9.5 getName()

Returns the name of the physical Sparki robot. Note that you must have set the name on each physical
robot at least once prior to getting the name, or you’ll get a garbage value.

1.9.6 setName(name)

Sets the name of the physical Sparki robot. Note that you must have set the name on each physical robot
at least once prior to getting the name, or you’ll get a garbage value.

18 Chapter 1. Sparki Commands

CHAPTER 2

Related Commands

2.1 Synchronization Commands

The synchronization commands are provided to allow several computers to do something at the same time. In the case
of sparki_learning, they are usually used to allow multiple computers to command their respective robots so that the
robots can do things together (at the same time). One computer acts as the server, and all other computers act as the
clients. The server is told how much time to wait, and then the server communicates that to any clients that connect to
the server. When the time expires, the server and clients all return from the synchronization function. These are found
in sparki_learning.sync_lib

2.1.1 get_client_start(server_ip, server_port = 32216)

Connects to a sync server returns the amount of time before the synchronization event should happen.
server_ip should be the server’s ip address (which is printed to the server’s screen when the server calls
start_sync_server()). server_port defaults to 32216 (the same as the server). server_port must be the same
on the client and server.

2.1.2 start_sync_server(time = 15, server_port = 32216)

Starts the sync server to execute the commands following after time seconds. Opens a network socket
on the computer, so you may be asked if you want Python to be allowed to open and listen on a port.
server_port defaults to port 32216. server_port must be the same on the client and server.

2.1.3 start_sync_client(server_ip, server_port = 32216)

Connects to a sync server and executes the commands following after the period of time specified by the
server. server_ip should be the server’s ip address (which is printed to the server’s screen when the server
calls start_sync_server()). server_port defaults to 32216 (the same as the server). server_port must be the
same on the client and server.

19

sparki𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑙𝑎𝑡𝑒𝑠𝑡

2.1.4 syncWait(server_ip, server_port = 32216)

Wait for a time specified by a sync server over a network. Uses the get_client_start(server_ip,
server_port = 32216) function above. One computer must be designated the sync server and execute
the start_sync_server command.

20 Chapter 2. Related Commands

	Sparki Commands
	General Commands
	Common Variables
	Movement Commands
	Grid Commands
	Input Commands
	Output Commands
	Sensor Commands
	IR Commands
	EEPROM Commands

	Related Commands
	Synchronization Commands

